席萌0209 发表于 2015-4-24 11:00:30

【安富莱DSP教程】第37章 FIR滤波器的实现

特别说明:完整45期数字信号处理教程,原创高性能示波器代码全开源地址:链接
第37章 FIR滤波器的实现

    本章节讲解FIR滤波器的低通,高通,带通和带阻滤波器的实现。
    37.1 FIR滤波器介绍
    37.2 Matlab工具箱生成C头文件
    37.3 FIR低通滤波器设计
    37.4 FIR高通滤波器设计
    37.5 FIR带通滤波器设计
    37.6 FIR带阻滤波器设计
    37.7 切比雪夫窗口设计带通滤波器
    37.8 FIR滤波后的群延迟
    37.9 总结

37.1 FIR滤波器介绍

    ARM官方提供的FIR库支持Q7,Q15,Q31和浮点四种数据类型。其中Q15和Q31提供了快速算法版本。
    FIR滤波器的基本算法是一种乘法-累加(MAC)运行,输出表达式如下:y = b * x + b * x + b * x + ...+ b * x
结构图如下:
这种网络结构就是在35.2.1小节所讲的直接型结构。

席萌0209 发表于 2015-4-24 11:06:14

37.2 Matlab工具箱fdatool生成C头文件


    下面我们讲解下如何通过fdatool工具生成C头文件,也就是生成滤波器系数。首先在matlab的命
窗口输入fadtool就能打开这个工具箱:
fadtool界面打开效果如下:
FIR滤波器的低通,高通,带通,带阻滤波的设置会在下面一一讲解,这里说一下设置后相应参数后如何生成滤波器系数。参数设置好以后点击如下按钮:
点击Design Filter按钮以后就生成了所需的滤波器系数,生成滤波器系数以后点击fadtool界面上的菜单Targets->Generate C header ,打开后显示如下界面:
然后点击Generate,生成如下界面:
再点击保存,并打开fdatool.h文件,可以看到生成的系数:
/*
* Filter Coefficients (C Source) generated by the Filter Design and Analysis Tool
*
* Generated by MATLAB(R) 7.14 and the Signal Processing Toolbox 6.17.
*
* Generated on: 22-Dec-2014 21:34:29
*
*/

/*
* Discrete-Time FIR Filter (real)
* -------------------------------
* Filter Structure: Direct-Form FIR
* Filter Length   : 51
* Stable            : Yes
* Linear Phase      : Yes (Type 1)
*/

/* General type conversion for MATLAB generated C-code*/
#include "tmwtypes.h"
/*
* Expected path to tmwtypes.h
* C:Program FilesMATLABR2012aexternincludetmwtypes.h
*/
/*
* Warning - Filter coefficients were truncated to fit specified data type.
*   The resulting response may not match generated theoretical response.
*   Use the Filter Design & Analysis Tool to design accurate
*   single-precision filter coefficients.
*/
const int BL = 51;
const real32_T B = {
-0.0009190982091, -0.00271769613,-0.002486952813, 0.003661438357,   0.0136509249,
    0.01735116541,0.00766530633,-0.006554719061,-0.007696784101, 0.006105459295,
    0.01387391612,0.0003508617228, -0.01690892503,-0.008905642666,0.01744112931,
    0.02074504457,-0.0122964941, -0.03424086422,-0.001034529647,0.04779030383,
    0.02736303769, -0.05937951803, -0.08230702579,0.06718690693,   0.3100151718,
   0.4300478697,   0.3100151718,0.06718690693, -0.08230702579, -0.05937951803,
    0.02736303769,0.04779030383,-0.001034529647, -0.03424086422,-0.0122964941,
    0.02074504457,0.01744112931,-0.008905642666, -0.01690892503,0.0003508617228,
    0.01387391612, 0.006105459295,-0.007696784101,-0.006554719061,0.00766530633,
    0.01735116541,   0.0136509249, 0.003661438357,-0.002486952813, -0.00271769613,
-0.0009190982091
};

上面数组B中的数据就是滤波器系数。下面小节讲解如何使用fdatool配置FIR低通,高通,带通和带阻滤波。关于fdatool的其它用法,
大家可以在matlab命令窗口中输入help fadtool打开帮助文档进行学习。

席萌0209 发表于 2015-4-24 11:12:05

37.3 FIR低通滤波器设计


    本章使用的FIR滤波器函数是arm_fir_f32。下面使用此函数设计FIR低通,高通,带通和带阻滤波器。

37.3.1 函数arm_fir_f32说明


函数定义如下:
    void arm_fir_f32(
      const arm_fir_instance_f32 * S,
      float32_t * pSrc,
      float32_t * pDst,
      uint32_t blockSize)
参数定义:
       *S       points to an instance of the floating-point FIR filter structure.
   *pSrc    points to the block of input data.
    *pDst    points to the block of output data.
   blockSize number of samples to process per call.
    return   none.
注意事项:
结构arm_fir_instance_f32的定义如下(在文件arm_math.h文件):
      typedef struct
      {
          uint16_t numTaps;   /**< number of filter coefficients in the filter. */
      float32_t *pState;    /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
          float32_t *pCoeffs;    /**< points to the coefficient array. The array is of length numTaps. */
       } arm_fir_instance_f32;
1. 参数pCoeffs指向滤波因数,滤波因数数组长度为numTaps。但要注意pCoeffs指向的滤波因数应该按照如下的逆序进行排列:
      {b, b, b, ..., b, b}
    但满足线性相位特性的FIR滤波器具有奇对称或者偶对称的系数,偶对称时逆序排列还是他本身。
2. pState指向状态变量数组,这个数组用于函数内部计算数据的缓存。
3. blockSize 这个参数的大小没有特殊要求,用户只需保证大于1小于等于采样点个数即可。

37.3.2 fdatool获取低通滤波器系数


    设计一个如下的例子:
    信号由50Hz正弦波和200Hz正弦波组成,采样率1Kbps,现设计一个低通滤波器,截止频率125Hz,采样320个数据,采用函数fir1进行设计(注意这个函数是基于窗口的方法设计FIR滤波,默认是hamming窗),滤波器阶数设置为28。fadtool的配置如下:
配置好低通滤波器后,具体滤波器系数的生成大家参考本章第二小节的方法即可。

37.3.3 低通滤波器实现


    通过工具箱fdatool获得低通滤波器系数后在开发板上运行函数arm_fir_f32 来测试低通滤波器的效果。
#define TEST_LENGTH_SAMPLES320    /* 采样点数 */
#define BLOCK_SIZE         32   /* 调用一次arm_fir_f32处理的采样点个数 */
#define NUM_TAPS             29   /* 滤波器系数个数 */

uint32_t blockSize = BLOCK_SIZE;
uint32_t numBlocks = TEST_LENGTH_SAMPLES/BLOCK_SIZE;            /* 需要调用arm_fir_f32的次数 */

static float32_t testInput_f32_50Hz_200Hz; /* 采样点 */
static float32_t testOutput;               /* 滤波后的输出 */
static float32_t firStateF32;      /* 状态缓存,大小numTaps + blockSize - 1*/

/* 低通滤波器系数 通过fadtool获取*/
const float32_t firCoeffs32LP = {
-0.001822523074f,-0.001587929321f,1.226008847e-18f,0.003697750857f,0.008075430058f,
0.008530221879f,   -4.273456581e-18f, -0.01739769801f,   -0.03414586186f,-0.03335915506f,
8.073562366e-18f,0.06763084233f,    0.1522061825f,   0.2229246944f,    0.2504960895f,
0.2229246944f,   0.1522061825f,   0.06763084233f,    8.073562366e-18f, -0.03335915506f,
-0.03414586186f,   -0.01739769801f,   -4.273456581e-18f, 0.008530221879f,0.008075430058f,
0.003697750857f,   1.226008847e-18f,-0.001587929321f,-0.001822523074f
};
/*
*********************************************************************************************************
*    函 数 名: arm_fir_f32_lp
*    功能说明: 调用函数arm_fir_f32_lp实现低通滤波器
*    形    参:无
*    返 回 值: 无
*********************************************************************************************************
*/
static void arm_fir_f32_lp(void)
{
uint32_t i;
arm_fir_instance_f32 S;
float32_t*inputF32, *outputF32;

/* 初始化输入输出缓存指针 */
inputF32 = &testInput_f32_50Hz_200Hz;
outputF32 = &testOutput;

/* 初始化结构体S */
arm_fir_init_f32(&S, NUM_TAPS, (float32_t *)&firCoeffs32LP, &firStateF32, blockSize);

/* 实现FIR滤波 */
for(i=0; i < numBlocks; i++)
{
arm_fir_f32(&S, inputF32 + (i * blockSize), outputF32 + (i * blockSize), blockSize);
}

/* 打印滤波后结果 */
for(i=0; i<TEST_LENGTH_SAMPLES; i++)
{
printf("%frn", testOutput);
}
}

运行如上函数可以通过串口打印出函数arm_fir_f32滤波后的波形数据,下面通过Matlab绘制波形来对比Matlab计算的结果和ARM官方库计算的结果。
    对比前需要先将串口打印出的一组数据加载到Matlab中, arm_fir_f32的计算结果起名sampledata,加载方法在前面的教程中已经讲解过,这里不做赘述了。Matlab中运行的代码如下:
%****************************************************************************************
%                           FIR低通滤波器设计
%***************************************************************************************
fs=1000;               %设置采样频率 1K
N=320;                %采样点数      
n=0:N-1;
t=n/fs;               %时间序列
f=n*fs/N;               %频率序列

x=sin(2*pi*50*t)+sin(2*pi*200*t);   %50Hz和200Hz正弦波混合
b=fir1(28, 0.25);
y=filter(b, 1, x);
subplot(211);
plot(t, y);
title('Matlab FIR滤波后的波形');
grid on;

subplot(212);
plot(t, sampledata);
title('ARM官方库滤波后的波形');
grid on;

Matlab运行结果如下:
从上面的波形对比来看,matlab和函数arm_fir_f32计算的结果基本是一致的。为了更好的说明滤波效果,下面从频域的角度来说明这个问题,Matlab上面运行如下代码:
%****************************************************************************************
%                           FIR低通滤波器设计
%***************************************************************************************
fs=1000;                  %设置采样频率 1K
N=320;                  %采样点数      
n=0:N-1;
t=n/fs;                      %时间序列
f=n*fs/N;                  %频率序列

x = sin(2*pi*50*t) + sin(2*pi*200*t);      %50Hz和200Hz正弦波合成

subplot(221);
plot(t, x);   %绘制信号Mix_Signal的波形                                                
xlabel('时间');
ylabel('幅值');
title('原始信号');
grid on;

subplot(222);
y=fft(x, N);   %对信号 Mix_Signal做FFT   
plot(f,abs(y));
xlabel('频率/Hz');
ylabel('振幅');
title('原始信号FFT');
grid on;

y3=fft(sampledata, N);            %经过FIR滤波器后得到的信号做FFT
subplot(223);                              
plot(f,abs(y3));
xlabel('频率/Hz');
ylabel('振幅');
title('滤波后信号FFT');
grid on;

b=fir1(28, 0.25);          %28阶FIR低通滤波器,截止频率125Hz
=freqz(b,1,512);      %通过fir1设计的FIR系统的频率响应
subplot(224);
plot(F/pi,abs(H));          %绘制幅频响应
xlabel('归一化频率');      
title(['Order=',int2str(30)]);
grid on;

Matlab显示效果如下:
上面波形变换前的FFT和变换后FFT可以看出,200Hz的正弦波基本被滤除。

席萌0209 发表于 2015-4-24 12:24:51

37.4 FIR高通滤波器设计



37.4.1 fdatool获取高通滤波器系数


    设计一个如下的例子:
    信号由50Hz正弦波和200Hz正弦波组成,采样率1Kbps,现设计一个高通滤波器,截止频率125Hz,采样320个数据,采用函数fir1进行设计(注意这个函数是基于窗口的方法设计FIR滤波,默认是hamming窗),滤波器阶数设置为28。fadtool的配置如下:
配置好高通滤波器后,具体滤波器系数的生成大家参考本章第二小节的方法即可。

37.4.2 高通滤波器实现


    通过工具箱fdatool获得高通滤波器系数后在开发板上运行函数arm_fir_f32 来测试高通滤波器的效果。
#define TEST_LENGTH_SAMPLES320    /* 采样点数 */
#define BLOCK_SIZE         32   /* 调用一次arm_fir_f32处理的采样点个数 */
#define NUM_TAPS             29   /* 滤波器系数个数 */

uint32_t blockSize = BLOCK_SIZE;
uint32_t numBlocks = TEST_LENGTH_SAMPLES/BLOCK_SIZE;            /* 需要调用arm_fir_f32的次数 */

static float32_t testInput_f32_50Hz_200Hz; /* 采样点 */
static float32_t testOutput;               /* 滤波后的输出 */
static float32_t firStateF32;      /* 状态缓存,大小numTaps + blockSize - 1*/

/* 高通滤波器其系数 通过fadtool获取*/
const float32_t firCoeffs32HP = {
0.0018157335f,   0.001582013792f,    -6.107207639e-18f,-0.003683975432f,   -0.008045346476f,
-0.008498443291f,-1.277260999e-17f,0.01733288541f,   0.03401865438f,   0.0332348831f,
-4.021742543e-17f, -0.06737889349f,    -0.1516391635f,   -0.2220942229f,   0.7486887574f,
-0.2220942229f,    -0.1516391635f,   -0.06737889349f,    -4.021742543e-17f,0.0332348831f,
0.03401865438f,    0.01733288541f,   -1.277260999e-17f,-0.008498443291f,   -0.008045346476f,
-0.003683975432f,-6.107207639e-18f,0.001582013792f,    0.0018157335f
};

/*
*********************************************************************************************************
*    函 数 名: arm_fir_f32_hp
*    功能说明: 调用函数arm_fir_f32_hp实现高通滤波器
*    形    参:无
*    返 回 值: 无
*********************************************************************************************************
*/
static void arm_fir_f32_hp(void)
{
uint32_t i;
arm_fir_instance_f32 S;
float32_t*inputF32, *outputF32;

/* 初始化输入输出缓存指针 */
inputF32 = &testInput_f32_50Hz_200Hz;
outputF32 = &testOutput;

/* 初始化结构体S */
arm_fir_init_f32(&S, NUM_TAPS, (float32_t *)&firCoeffs32HP, &firStateF32, blockSize);

/* 实现FIR滤波 */
for(i=0; i < numBlocks; i++)
{
arm_fir_f32(&S, inputF32 + (i * blockSize), outputF32 + (i * blockSize), blockSize);
}

/* 打印滤波后结果 */
for(i=0; i<TEST_LENGTH_SAMPLES; i++)
{
printf("%frn", testOutput);
}

}



运行如上函数可以通过串口打印出函数arm_fir_f32滤波后的波形数据,下面通过Matlab绘制波形来对比Matlab计算的结果和ARM官方库计算的结果。
    对比前需要先将串口打印出的一组数据加载到Matlab中, arm_fir_f32的计算结果起名sampledata,加载方法在前面的教程中已经讲解过,这里不做赘述了。Matlab中运行的代码如下:
%****************************************************************************************
%                           FIR高通滤波器设计
%***************************************************************************************
fs=1000;                  %设置采样频率 1K
N=320;                   %采样点数      
n=0:N-1;
t=n/fs;                  %时间序列
f=n*fs/N;                  %频率序列

x=sin(2*pi*50*t)+sin(2*pi*200*t); %50Hz和200Hz正弦波混合         
b=fir1(28, 125/500, 'high');   %获得滤波器系数,截止频率125Hz,高通滤波。
y=filter(b, 1, x);                %获得滤波后的波形
subplot(211);
plot(t, y);
title('Matlab FIR滤波后的实际波形');
grid on;

subplot(212);
plot(t, sampledata);      %绘制ARM官方库滤波后的波形。
title('ARM官方库滤波后的实际波形');
grid on;

Matlab显示效果如下:
从上面的波形对比来看,matlab和函数arm_fir_f32计算的结果基本是一致的。为了更好的说明滤波效果,下面从频域的角度来说明这个问题,Matlab上面运行如下代码:
%****************************************************************************************
%                           FIR高通滤波器设计
%***************************************************************************************
fs=1000;                  %设置采样频率 1K
N=320;                   %采样点数      
n=0:N-1;
t=n/fs;                   %时间序列
f=n*fs/N;               %频率序列

x=sin(2*pi*50*t)+sin(2*pi*200*t); %50Hz和200Hz正弦波混合         
subplot(221);
plot(t, x);               %绘制信号x的波形                                                
xlabel('时间');
ylabel('幅值');
title('原始信号');
grid on;

subplot(222);
y=fft(x, N);                %对信号x做FFT   
plot(f,abs(y));
xlabel('频率/Hz');
ylabel('振幅');
title('原始信号FFT');
grid on;

y3=fft(sampledata, N);   %经过FIR滤波器后得到的信号做FFT
subplot(223);                              
plot(f,abs(y3));
xlabel('频率/Hz');
ylabel('振幅');
title('滤波后信号FFT');
grid on;

b=fir1(28, 125/500, 'high');   %获得滤波器系数,截止频率125Hz,高通滤波。
=freqz(b,1,512);         %通过fir1设计的FIR系统的频率响应
subplot(224);
plot(F/pi,abs(H));            %绘制幅频响应
xlabel('归一化频率');      
title(['Order=',int2str(30)]);
grid on;

Matlab显示效果如下:
上面波形变换前的FFT和变换后FFT可以看出,50Hz的正弦波基本被滤除。

席萌0209 发表于 2015-4-24 12:30:02

37.5 FIR带通滤波器设计



37.5.1 fdatool获取带通滤波器系数


    设计一个如下的例子:
   信号由50Hz正弦波和200Hz正弦波组成,采样率1Kbps,现设计一个带通滤波器,截止频率125Hz和300Hz,采样320个数据,采用函数fir1进行设计(注意这个函数是基于窗口的方法设计FIR滤波,默认是hamming窗),滤波器阶数设置为28。fadtool的配置如下:
配置好带通滤波器后,具体滤波器系数的生成大家参考本章第二小节的方法即可。

37.5.2 带通滤波器实现


    通过工具箱fdatool获得带通滤波器系数后在开发板上运行函数arm_fir_f32 来测试带通滤波器的效果。
#define TEST_LENGTH_SAMPLES320    /* 采样点数 */
#define BLOCK_SIZE         32   /* 调用一次arm_fir_f32处理的采样点个数 */
#define NUM_TAPS             29   /* 滤波器系数个数 */

uint32_t blockSize = BLOCK_SIZE;
uint32_t numBlocks = TEST_LENGTH_SAMPLES/BLOCK_SIZE;            /* 需要调用arm_fir_f32的次数 */

static float32_t testInput_f32_50Hz_200Hz; /* 采样点 */
static float32_t testOutput;               /* 滤波后的输出 */
static float32_t firStateF32;      /* 状态缓存,大小numTaps + blockSize - 1*/

/* 带通滤波器系数 通过fadtool获取*/
const float32_t firCoeffs32BP = {
0.003531039227f,    0.0002660876198f,   -0.001947779674f,0.001266813371f,-0.008019094355f,
-0.01986379735f,    0.01018396299f,   0.03163734451f,    0.00165955862f,   0.03312643617f,
0.0622616075f,      -0.1229852438f,   -0.2399847955f,    0.07637182623f,   0.3482480049f,
0.07637182623f,   -0.2399847955f,   -0.1229852438f,    0.0622616075f,    0.03312643617f,
0.00165955862f,   0.03163734451f,   0.01018396299f,    -0.01986379735f,-0.008019094355f,
0.001266813371f,   -0.001947779674f,    0.0002660876198f,0.003531039227f
};

/*
*********************************************************************************************************
*    函 数 名: arm_fir_f32_bp
*    功能说明: 调用函数arm_fir_f32_bp实现带通滤波器
*    形    参:无
*    返 回 值: 无
*********************************************************************************************************
*/
static void arm_fir_f32_bp(void)
{
uint32_t i;
arm_fir_instance_f32 S;
float32_t*inputF32, *outputF32;

/* 初始化输入输出缓存指针 */
inputF32 = &testInput_f32_50Hz_200Hz;
outputF32 = &testOutput;

/* 初始化结构体S */
arm_fir_init_f32(&S, NUM_TAPS, (float32_t *)&firCoeffs32BP, &firStateF32, blockSize);

/* 实现FIR滤波 */
for(i=0; i < numBlocks; i++)
{
arm_fir_f32(&S, inputF32 + (i * blockSize), outputF32 + (i * blockSize), blockSize);
}

/* 打印滤波后结果 */
for(i=0; i<TEST_LENGTH_SAMPLES; i++)
{
printf("%frn", testOutput);
}
}

运行如上函数可以通过串口打印出函数arm_fir_f32滤波后的波形数据,下面通过Matlab绘制波形来对比Matlab计算的结果和ARM官方库计算的结果。
    对比前需要先将串口打印出的一组数据加载到Matlab中, arm_fir_f32的计算结果起名sampledata,加载方法在前面的教程中已经讲解过,这里不做赘述了。Matlab中运行的代码如下:
%****************************************************************************************
%                           FIR带通滤波器设计
%***************************************************************************************
fs=1000;                   %设置采样频率 1K
N=320;                  %采样点数      
n=0:N-1;
t=n/fs;                     %时间序列
f=n*fs/N;                  %频率序列

x=sin(2*pi*50*t)+sin(2*pi*200*t);%50Hz和200Hz正弦波混合         
b=fir1(28, );   %获得滤波器系数,截止频率125Hz和300Hz,带通滤波。
y=filter(b, 1, x);                   %获得滤波后的波形
subplot(211);
plot(t, y);
title('Matlab FIR滤波后的实际波形');
grid on;

subplot(212);
plot(t, sampledata);      %绘制ARM官方库滤波后的波形。
title('ARM官方库滤波后的实际波形');
grid on;

Matlab显示效果如下:
从上面的波形对比来看,matlab和函数arm_fir_f32计算的结果基本是一致的。为了更好的说明滤波效果,下面从频域的角度来说明这个问题,Matlab上面运行如下代码:
%****************************************************************************************
%                           FIR带通滤波器设计
%***************************************************************************************
fs=1000;                   %设置采样频率 1K
N=320;                  %采样点数      
n=0:N-1;
t=n/fs;                  %时间序列
f=n*fs/N;                  %频率序列

x=sin(2*pi*50*t)+sin(2*pi*200*t);%50Hz和200Hz正弦波混合               
subplot(221);
plot(t, x);       %绘制信号x的波形                                                
xlabel('时间');
ylabel('幅值');
title('原始信号');
grid on;

subplot(222);
y=fft(x, N);   %对信号x做FFT   
plot(f,abs(y));
xlabel('频率/Hz');
ylabel('振幅');
title('原始信号FFT');
grid on;

y3=fft(sampledata, N);       %经过FIR滤波器后得到的信号做FFT
subplot(223);                              
plot(f,abs(y3));
xlabel('频率/Hz');
ylabel('振幅');
title('滤波后信号FFT');
grid on;

b=fir1(28, );   %获得滤波器系数,截止频率125Hz,高通滤波。
=freqz(b,1,160);            %通过fir1设计的FIR系统的频率响应
subplot(224);
plot(F/pi,abs(H));                %绘制幅频响应
xlabel('归一化频率');      
title(['Order=',int2str(28)]);
grid on;
上面波形变换前的FFT和变换后FFT可以看出,50Hz的正弦波基本被滤除。

席萌0209 发表于 2015-4-24 12:34:36

37.6 FIR带阻滤波器设计



37.6.1 fdatool获取带阻滤波器系数


    设计一个如下的例子:
    信号由50Hz正弦波和200Hz正弦波组成,采样率1Kbps,现设计一个带阻滤波器,截止频率125Hz和300Hz,采样320个数据,采用函数fir1进行设计(注意这个函数是基于窗口的方法设计FIR滤波,默认是hamming窗),滤波器阶数设置为28。fadtool的配置如下:
配置好带阻滤波器后,具体滤波器系数的生成大家参考本章第二小节的方法即可。

37.6.2 带阻滤波器实现


通过工具箱fdatool获得带阻滤波器系数后在开发板上运行函数arm_fir_f32 来测试带通滤波器的效果。
#define TEST_LENGTH_SAMPLES320    /* 采样点数 */
#define BLOCK_SIZE         32   /* 调用一次arm_fir_f32处理的采样点个数 */
#define NUM_TAPS             29   /* 滤波器系数个数 */

uint32_t blockSize = BLOCK_SIZE;
uint32_t numBlocks = TEST_LENGTH_SAMPLES/BLOCK_SIZE;            /* 需要调用arm_fir_f32的次数 */

static float32_t testInput_f32_50Hz_200Hz; /* 采样点 */
static float32_t testOutput;               /* 滤波后的输出 */
static float32_t firStateF32;      /* 状态缓存,大小numTaps + blockSize - 1*/

/* 带阻滤波器系数 通过fadtool获取*/
const float32_t firCoeffs32BPCheb = {
0.01801843569f,    0.0007182828849f,-0.004868913442f,0.002710500965f,-0.01462193858f,
-0.03147283196f,   0.01435638033f,    0.04055848345f,    0.00197162549f,   0.03706155345f,
0.06650412083f,    -0.1269270927f,    -0.2418768406f,    0.07591249049f,   0.3445736468f,
0.07591249049f,    -0.2418768406f,    -0.1269270927f,    0.06650412083f,   0.03706155345f,
0.00197162549f,    0.04055848345f,    0.01435638033f,    -0.03147283196f,-0.01462193858f,
0.002710500965f,-0.004868913442f,   0.0007182828849f,0.01801843569f
};*/
const float32_t firCoeffs32BS = {
-0.003560454352f,-0.0002683042258f,0.001964005642f,   -0.001277366537f,   0.008085897192f,
0.02002927102f,    -0.01026879996f,    -0.03190089762f,   -0.001673383522f,   -0.0334023945f,
-0.06278027594f,   0.1240097657f,      0.2419839799f,   -0.07700803876f,    0.6521340013f,
-0.07700803876f,   0.2419839799f,      0.1240097657f,   -0.06278027594f,    -0.0334023945f,
-0.001673383522f,-0.03190089762f,    -0.01026879996f,   0.02002927102f,   0.008085897192f,
-0.001277366537f,0.001964005642f,    -0.0002683042258f, -0.003560454352f
};

/*
*********************************************************************************************************
*    函 数 名: arm_fir_f32_bs
*    功能说明: 调用函数arm_fir_f32_bs实现带阻滤波器
*    形    参:无
*    返 回 值: 无
*********************************************************************************************************
*/
static void arm_fir_f32_bs(void)
{
uint32_t i;
arm_fir_instance_f32 S;
float32_t*inputF32, *outputF32;

/* 初始化输入输出缓存指针 */
inputF32 = &testInput_f32_50Hz_200Hz;
outputF32 = &testOutput;

/* 初始化结构体S */
arm_fir_init_f32(&S, NUM_TAPS, (float32_t *)&firCoeffs32BS, &firStateF32, blockSize);

/* 实现FIR滤波 */
for(i=0; i < numBlocks; i++)
{
arm_fir_f32(&S, inputF32 + (i * blockSize), outputF32 + (i * blockSize), blockSize);
}

/* 打印滤波后结果 */
for(i=0; i<TEST_LENGTH_SAMPLES; i++)
{
printf("%frn", testOutput);
}
}

运行如上函数可以通过串口打印出函数arm_fir_f32滤波后的波形数据,下面通过Matlab绘制波形来对比Matlab计算的结果和ARM官方库计算的结果。
对比前需要先将串口打印出的一组数据加载到Matlab中, arm_fir_f32的计算结果起名sampledata,加载方法在前面的教程中已经讲解过,这里不做赘述了。Matlab中运行的代码如下:
%****************************************************************************************
%                           FIR带阻滤波器设计
%***************************************************************************************
fs=1000;                  %设置采样频率 1K
N=320;                   %采样点数      
n=0:N-1;
t=n/fs;                  %时间序列
f=n*fs/N;                  %频率序列

x=sin(2*pi*50*t)+sin(2*pi*200*t);       %50Hz和200Hz正弦波混合         
b=fir1(28, , 'stop');   %获得滤波器系数,截止频率125Hz和300,带阻滤波。
y=filter(b, 1, x);                        %获得滤波后的波形
subplot(211);
plot(t, y);
title('Matlab FIR滤波后的实际波形');
grid on;

subplot(212);
plot(t, sampledata);      %绘制ARM官方库滤波后的波形。
title('ARM官方库滤波后的实际波形');
grid on;

Matlab运行结果如下:
从上面的波形对比来看,matlab和函数arm_fir_f32计算的结果基本是一致的。为了更好的说明滤波效果,下面从频域的角度来说明这个问题,Matlab上面运行如下代码:
%****************************************************************************************
%                           FIR带阻滤波器设计
%***************************************************************************************
fs=1000;                   %设置采样频率 1K
N=320;                  %采样点数      
n=0:N-1;
t=n/fs;                  %时间序列
f=n*fs/N;                  %频率序列

x=sin(2*pi*50*t)+sin(2*pi*200*t);%50Hz和200Hz正弦波混合         
subplot(221);
plot(t, x);   %绘制信号x的波形                                                
xlabel('时间');
ylabel('幅值');
title('原始信号');
grid on;

subplot(222);
y=fft(x, N);   %对信号x做FFT   
plot(f,abs(y));
xlabel('频率/Hz');
ylabel('振幅');
title('原始信号FFT');
grid on;

y3=fft(sampledata, N);       %经过FIR滤波器后得到的信号做FFT
subplot(223);                              
plot(f,abs(y3));
xlabel('频率/Hz');
ylabel('振幅');
title('滤波后信号FFT');
grid on;

b=fir1(28, , 'stop');%获得滤波器系数,截止频率125Hz和300Hz,带阻滤波。   
=freqz(b,1,160);                  %通过fir1设计的FIR系统的频率响应
subplot(224);
plot(F/pi,abs(H));             %绘制幅频响应
xlabel('归一化频率');      
title(['Order=',int2str(28)]);
grid on;

Matlab运行效果如下:
上面波形变换前的FFT和变换后FFT可以看出,200Hz的正弦波基本被滤除。

席萌0209 发表于 2015-4-24 12:39:05

37.7 切比雪夫窗口设计带通滤波器



37.7.1 fdatool获取滤波器系数


    设计一个如下的例子:
    信号由50Hz正弦波和200Hz正弦波组成,采样率1Kbps,现设计一个使用切比雪夫窗口的带通滤波器,截止频率125Hz和300Hz,切比雪夫波纹设置为30db,采样320个数据,采用函数fir1进行设计(注意这个函数是基于窗口的方法设计FIR滤波,默认是hamming窗),滤波器阶数设置为28。fadtool的配置如下:
配置好带通滤波器后,具体滤波器系数的生成大家参考本章第二小节的方法即可。

37.7.2 带通滤波器实现


    通过工具箱fdatool获得带通滤波器系数后在开发板上运行函数arm_fir_f32 来测试带通滤波器的效果。
#define TEST_LENGTH_SAMPLES320    /* 采样点数 */
#define BLOCK_SIZE         32   /* 调用一次arm_fir_f32处理的采样点个数 */
#define NUM_TAPS             29   /* 滤波器系数个数 */

uint32_t blockSize = BLOCK_SIZE;
uint32_t numBlocks = TEST_LENGTH_SAMPLES/BLOCK_SIZE;            /* 需要调用arm_fir_f32的次数 */

static float32_t testInput_f32_50Hz_200Hz; /* 采样点 */
static float32_t testOutput;               /* 滤波后的输出 */
static float32_t firStateF32;      /* 状态缓存,大小numTaps + blockSize - 1*/
/* 带通滤波器系数 切比雪夫窗口 通过fadtool获取*/
const float32_t firCoeffs32BPCheb = {
0.01801843569f,    0.0007182828849f,-0.004868913442f,0.002710500965f,-0.01462193858f,
-0.03147283196f,   0.01435638033f,    0.04055848345f,    0.00197162549f,   0.03706155345f,
0.06650412083f,    -0.1269270927f,    -0.2418768406f,    0.07591249049f,   0.3445736468f,
0.07591249049f,    -0.2418768406f,    -0.1269270927f,    0.06650412083f,   0.03706155345f,
0.00197162549f,    0.04055848345f,    0.01435638033f,    -0.03147283196f,-0.01462193858f,
0.002710500965f,-0.004868913442f,   0.0007182828849f,0.01801843569f
};

/*
*********************************************************************************************************
*    函 数 名: arm_fir_f32_bp
*    功能说明: 调用函数arm_fir_f32_bp实现带通滤波器
*    形    参:无
*    返 回 值: 无
*********************************************************************************************************
*/
static void arm_fir_f32_bp(void)
{
uint32_t i;
arm_fir_instance_f32 S;
float32_t*inputF32, *outputF32;

/* 初始化输入输出缓存指针 */
inputF32 = &testInput_f32_50Hz_200Hz;
outputF32 = &testOutput;

/* 初始化结构体S */
arm_fir_init_f32(&S, NUM_TAPS, (float32_t *)&firCoeffs32BP, &firStateF32, blockSize);

/* 实现FIR滤波 */
for(i=0; i < numBlocks; i++)
{
arm_fir_f32(&S, inputF32 + (i * blockSize), outputF32 + (i * blockSize), blockSize);
}

/* 打印滤波后结果 */
for(i=0; i<TEST_LENGTH_SAMPLES; i++)
{
printf("%frn", testOutput);
}
}

运行如上函数可以通过串口打印出函数arm_fir_f32滤波后的波形数据,下面通过Matlab绘制波形来对比Matlab计算的结果和ARM官方库计算的结果。
    对比前需要先将串口打印出的一组数据加载到Matlab中, arm_fir_f32的计算结果起名sampledata,加载方法在前面的教程中已经讲解过,这里不做赘述了。Matlab中运行的代码如下:
%****************************************************************************************
%                           FIR带通滤波器设计,切比雪夫窗口
%***************************************************************************************
fs=1000;                  %设置采样频率 1K
N=320;                   %采样点数      
n=0:N-1;
t=n/fs;                  %时间序列
f=n*fs/N;               %频率序列

x=sin(2*pi*50*t)+sin(2*pi*200*t);          %50Hz和200Hz正弦波混合      
Window = chebwin(29, 30);               %30db的切比雪夫窗
b=fir1(28, , Window);   %获得滤波器系数,截止频率125Hz和300Hz,带通滤波。
y=filter(b, 1, x);                           %获得滤波后的波形
subplot(211);
plot(t, y);
title('Matlab FIR滤波后的实际波形');
grid on;

subplot(212);
plot(t, sampledata);               %绘制ARM官方库滤波后的波形。
title('ARM官方库滤波后的实际波形');
grid on;

Matlab的运行效果如下:
从上面的波形对比来看,matlab和函数arm_fir_f32计算的结果基本是一致的。为了更好的说明滤波效果,下面从频域的角度来说明这个问题,Matlab上面运行如下代码:
%****************************************************************************************
%                           FIR带通滤波器设计,切比雪夫窗口
%***************************************************************************************
fs=1000;                   %设置采样频率 1K
N=320;                  %采样点数      
n=0:N-1;
t=n/fs;                     %时间序列
f=n*fs/N;                  %频率序列


x=sin(2*pi*50*t)+sin(2*pi*200*t);%50Hz和200Hz正弦波混合               
subplot(221);
plot(t, x);   %绘制信号x的波形                                                
xlabel('时间');
ylabel('幅值');
title('原始信号');
grid on;

subplot(222);
y=fft(x, N);   %对信号x做FFT   
plot(f,abs(y));
xlabel('频率/Hz');
ylabel('振幅');
title('原始信号FFT');
grid on;

y3=fft(sampledata, N);       %经过FIR滤波器后得到的信号做FFT
subplot(223);                              
plot(f,abs(y3));
xlabel('频率/Hz');
ylabel('振幅');
title('滤波后信号FFT');
grid on;

Window = chebwin(29, 30);       %30db的切比雪夫窗
b=fir1(28, , Window);%获得滤波器系数,截止频率125Hz和300Hz,带通滤波。
=freqz(b,1,160);                  %通过fir1设计的FIR系统的频率响应
subplot(224);
plot(F/pi,abs(H));                     %绘制幅频响应
xlabel('归一化频率');      
title(['Order=',int2str(28)]);
grid on;

Matlab运行结果如下:
上面波形变换前的FFT和变换后FFT可以看出,50Hz的正弦波基本被滤除,在归一化频率中我们可以看到一定的波纹

席萌0209 发表于 2015-4-24 12:43:00

37.8 FIR滤波后的群延迟


    波形经过FIR滤波器后,输出的波形会有一定的延迟。对于线性相位的FIR,这个群延迟就是一个常数。但是实际应用中这个群延迟是多少呢,关于群延迟的数值,fdatool工具箱会根据用户的配置计算好。
    比如咱们前面设计的28阶FIR高通,低通,带通和带阻滤波器的群延迟就是14,反应在实际的采样值上就是滤波后输出数据的第15个才是实际滤波后的波形数据起始点。
    下面是看群延迟采样点的位置:
细心的读者可能发现全面做低通,高通,带通和带阻滤波后,输出的波形前面几个点感觉有问题,其实就是群延迟造成的。
    为了更好的说明这个问题,下面再使用Matlab举一个低通和一个高通滤波的例子:信号由50Hz正弦波和200Hz正弦波组成,采样率1Kbps,截止频率125Hz,采样320个数据,采用函数fir1进行设计,滤波器阶数设置为28。下面是低通滤波器的Matlab代码,将原始信号从第一个点开始显示,而滤波后的信号从群延迟后的第15个点开始显示:
fs=1000;                  %设置采样频率 1K
N=320;                  %采样点数      
n=0:N-1;
t=n/fs;                     %时间序列
f=n*fs/N;                  %频率序列

x1=sin(2*pi*50*t);
x2=sin(2*pi*200*t);
x=sin(2*pi*50*t)+sin(2*pi*200*t);%50Hz和200Hz正弦波混合               

plot(n, x1, 'b');   %绘制信号x的波形
xlabel('时间');
ylabel('幅值');
title('原始信号和滤波后信号');
hold on;

b=fir1(28, 125/500);   %获得滤波器系数,截止频率125Hz.
y=filter(b, 1, x);
plot(n(1:305), y(15:319), 'r');
legend('原始信号','滤波后信号');
grid on;

Matlab的运行结果如下:
可以看出,显示波形基本重合,这个说明14个采样点的群延迟是正确的。下面同样使用上面的那个例子实现一个高通滤波器,截止频率是125Hz,阶数同样设置为28,将原始信号从第一个点开始显示,而滤波后的信号从群延迟后的第15个点开始显示,Matlab运行代码如下:
fs=1000;                  %设置采样频率 1K
N=320;                   %采样点数      
n=0:N-1;
t=n/fs;                  %时间序列
f=n*fs/N;                  %频率序列

x1=sin(2*pi*50*t);
x2=sin(2*pi*200*t);
x=sin(2*pi*50*t)+sin(2*pi*200*t);%50Hz和200Hz正弦波混合               

plot(n, x2, 'b');   %绘制信号x的波形
xlabel('时间');
ylabel('幅值');
title('原始信号和滤波后信号');
hold on;

b=fir1(28, 125/500, 'high');   %获得滤波器系数,截止频率125Hz.
y=filter(b, 1, x);
plot(n(1:305), y(15:319), 'r');
legend('原始信号','滤波后信号');
grid on;

Matlab运行结果如下:
可以看出,显示波形基本重合,这个说明14个采样点的群延迟也是是正确的。大家在使用FIR滤波器的时候一定要注意这个问题。

席萌0209 发表于 2015-4-24 12:44:59

37.9 总结


    本章节主要讲解了FIR滤波器的低通,高通,带通和带阻滤波器的实现,同时一定要注意线性相位FIR滤波器的群延迟问题。

xgqxgq 发表于 2016-7-8 13:44:05

您好,我想问下,能把所有的数据格式换成u16的类型吗,浮点数32位我之前有弄过,够没问题,可是改了U16的就实现不了滤波了

eric2013 发表于 2016-7-8 16:44:20

回 xgqxgq 的帖子

xgqxgq:您好,我想问下,能把所有的数据格式换成u16的类型吗,浮点数32位我之前有弄过,够没问题,可是改了U16的就实现不了滤波了
 (2016-07-08 13:44) images/back.gif

有q15的api函数,研究下。

2602082487 发表于 2016-8-31 15:08:44

你好,我想用f4把10K和200Hz的混叠中滤除200Hz的信号,能做到吗?

eric2013 发表于 2016-8-31 15:12:46

回 2602082487 的帖子

2602082487:你好,我想用f4把10K和200Hz的混叠中滤除200Hz的信号,能做到吗? (2016-08-31 15:08) images/back.gif

完全没问题。做一个高通滤波器就可以了。

2602082487 发表于 2016-8-31 17:30:37

回 eric2013 的帖子

eric2013:完全没问题。做一个高通滤波器就可以了。 (2016-08-31 15:12) images/back.gif

嗯,实时滤波f4的计算能力够哈,谢谢

单枪舞九州 发表于 2017-6-2 13:45:24

matlab是个好帮手!
页: [1]
查看完整版本: 【安富莱DSP教程】第37章 FIR滤波器的实现