本帖最后由 flyaqiao 于 2023-10-26 19:46 编辑
项目需要,使用的nuc972主芯片,需要支持网络协议,就打算移植一下azure的tx,filex,netxduo,下面新记录一下tx的移植过程:
由于新唐的arm9中断处理和定时器初始化的寄存器并不同于tx官方的arm9的port,所以官方的port无法正常运行. 2.创建tx的keil工程,nuc972官方没有提供iar工程,所以这里都使用keil,编译成lib的形式.
项目结构:
共三个目录:将tx的common/src目录下的所有文件添加到src目录
将tx的common/inc目录下的所有文件添加到inc目录
将tx的ports/arm9/ac5/inc目录下的所有文件添加到inc目录(其实就一个tx_port.h)
将tx的ports/arm9/ac5/src目录下的所有文件添加到port目录
如图:

设置DEVICE:

设置Output:

设置Include:

编译生成tx.lib文件备用,也可以直接下载工程文件并到tx根目录下:tx_lib_20231026182439.rar

以上就是tx库的生成过程 3.打开新唐官方Non-OS BSP中的hello工程
将刚才生成的tx.lib放到hello目录下
将ports/arm9/ac5/example_build下的tx_initialize_low_level.s放到hello目录下,移植的主要工作就是修改这个文件,这里先放上我移植好的文件
tx_initialize_low_level_20231026183734.rar
打开工程加入刚才的两个文件,并在项目中排除startup_NUC970.s文件
 
此时编译项目应该没有错误
移植之前先修改sys.c文件,删除注册中断回调时的sysInitializeAIC调用

中断入口将由tx_initialize_low_level.s中的__tx_irq_handler接管,所以不能再动态修改中断入口 ;/**************************************************************************/;/* */;/* Copyright (c) Microsoft Corporation. All rights reserved. */;/* */;/* This software is licensed under the Microsoft Software License */;/* Terms for Microsoft Azure RTOS. Full text of the license can be */;/* found in the LICENSE file at https://aka.ms/AzureRTOS_EULA */;/* and in the root directory of this software. */;/* */;/**************************************************************************/;;;/**************************************************************************/;/**************************************************************************/;/** */ ;/** ThreadX Component */ ;/** */;/** Initialize */;/** */;/**************************************************************************/;/**************************************************************************/;;;#define TX_SOURCE_CODE;;;/* Include necessary system files. */;;#include "tx_api.h";#include "tx_initialize.h";#include "tx_thread.h";#include "tx_timer.h";;SVC_MODE EQU 0xD3 ; Disable IRQ/FIQ SVC modeIRQ_MODE EQU 0xD2 ; Disable IRQ/FIQ IRQ modeFIQ_MODE EQU 0xD1 ; Disable IRQ/FIQ FIQ modeSYS_MODE EQU 0xDF ; Disable IRQ/FIQ SYS modeHEAP_SIZE EQU 4096 ; Heap sizeUND_STACK_SIZE EQU 256ABT_STACK_SIZE EQU 256FIQ_STACK_SIZE EQU 512 ; FIQ stack sizeSVC_STACK_SIZE EQU 1024SYS_STACK_SIZE EQU 1024 ; SYS stack size (used for nested interrupts)IRQ_STACK_SIZE EQU 1024 ; IRQ stack size;;;/* ARM9 ARMulator Timer and Interrupt controller information. This depends on ; the ARMulator's Interrupt Controller and Timer being enabled in the default.ami.; In addition, the addresses must match those specified in the peripherals.ami file.; Please refer to section 2.10 and 4.16 of the Debug Target Guide, version 1.2. */;TMR0_CLK EQU 0x00E4E1C0TMR0_IRQn EQU 16REG_TMR_TISR EQU 0xB8001060 ; Timer Interrupt Status RegisterREG_AIC_BA EQU 0xB8002000 ; Interrupt ControllerREG_AIC_IPER EQU 0xB8002118 ; Interrupt priority encoding registerREG_AIC_ISNR EQU 0xB8002120 ; Interrupt source number registerREG_AIC_MDCR EQU 0xB8002138 ; Mask disable command registerREG_AIC_MDCRH EQU 0xB800213C ; Mask disable command register (High)REG_AIC_EOSCR EQU 0xB8002150;; IMPORT _tx_thread_system_stack_ptr IMPORT _tx_initialize_unused_memory IMPORT _tx_thread_context_save IMPORT _tx_thread_context_restore IF :DEF:TX_ENABLE_FIQ_SUPPORT IMPORT _tx_thread_fiq_context_save IMPORT _tx_thread_fiq_context_restore ENDIF IF :DEF:TX_ENABLE_IRQ_NESTING IMPORT _tx_thread_irq_nesting_start IMPORT _tx_thread_irq_nesting_end ENDIF IF :DEF:TX_ENABLE_FIQ_NESTING IMPORT _tx_thread_fiq_nesting_start IMPORT _tx_thread_fiq_nesting_end ENDIF IMPORT _tx_timer_interrupt IMPORT __main IMPORT _tx_version_id IMPORT _tx_build_options IMPORT sysIrqHandlerTable IMPORT sysSetTimerReferenceClock IMPORT sysStartTimer IMPORT sysGetSdramSizebyMB IMPORT |Image$$RW_RAM1$$ZI$$Limit|; AREA NUC_INIT, CODE, READONLY;;/* Define the ARM9 vector area. This should be located or copied to 0. */; ENTRY EXPORT Reset_Go EXPORT __vectors__vectors B Reset_Go LDR pc,=__tx_undefined ; Undefined handler LDR pc,=__tx_swi_interrupt ; Software interrupt handler LDR pc,=__tx_prefetch_handler ; Prefetch exception handler LDR pc,=__tx_abort_handler ; Abort exception handler LDR pc,=__tx_reserved_handler ; Reserved exception handler LDR pc,=__tx_irq_handler ; IRQ interrupt handler LDR pc,=__tx_fiq_handler ; FIQ interrupt handler;;Reset_Go ; Disable Interrupt in case code is load by ICE while other firmware is executing LDR r0, =REG_AIC_MDCR LDR r1, =0xFFFFFFFF STR r1, [r0] LDR r0, =REG_AIC_MDCRH STR r1, [r0] ;-------------------------------- ; Initial Stack Pointer register ;-------------------------------- ;INIT_STACK LDR r1, =|Image$$RW_RAM1$$ZI$$Limit| ; Get end of non-initialized RAM area LDR r2, =HEAP_SIZE ; Pickup the heap size ADD r1, r2, r1 ; Setup heap limit ADD r1, r1, #4 ; Setup stack limit; /* Setup the system mode stack for nested interrupt support */ LDR r2, =SYS_STACK_SIZE ; Pickup stack size MOV r3, #SYS_MODE ; Build SYS mode CPSR MSR CPSR_c, r3 ; Enter SYS mode ADD r1, r1, r2 ; Calculate start of SYS stack BIC r1, r1, #7 ; Ensure 8-byte alignment MOV sp, r1 ; Setup SYS stack pointer LDR r2, =FIQ_STACK_SIZE ; Pickup stack size MOV r0, #FIQ_MODE ; Build FIQ mode CPSR MSR CPSR_c, r0 ; Enter FIQ mode ADD r1, r1, r2 ; Calculate start of FIQ stack BIC r1, r1, #7 ; Ensure 8-byte alignment MOV sp, r1 ; Setup FIQ stack pointer MOV sl, #0 ; Clear sl MOV fp, #0 ; Clear fp MOV r0, #IRQ_MODE ; Build IRQ mode CPSR MSR CPSR_c, r0 ; Enter IRQ mode ADD r1, r1, r2 ; Calculate start of IRQ stack BIC r1, r1, #7 ; Ensure 8-byte alignment MOV sp, r1 ; Setup IRQ stack pointer LDR r2, =SVC_STACK_SIZE ; Pickup SVC (SVC stack size) MOV r0, #SVC_MODE ; Build SVC mode CPSR MSR CPSR_c, r0 ; Enter SVC mode ADD r1, r1, r2 ; Calculate start of SVC stack BIC r1, r1, #7 ; Ensure 8-byte alignment MOV sp, r1 ; Setup SVC stack pointe ;------------------------------------------------------ ; Set the normal exception vector of CP15 control bit ;------------------------------------------------------ MRC p15, 0, r0 , c1, c0 ; r0 := cp15 register 1 BIC r0, r0, #0x2000 ; Clear bit13 in r1 MCR p15, 0, r0 , c1, c0 ; cp15 register 1 := r0 IMPORT __main ;----------------------------- ; enter the C code ;----------------------------- B __main AREA ||.text||, CODE, READONLY;/**************************************************************************/ ;/* */ ;/* FUNCTION RELEASE */ ;/* */ ;/* _tx_initialize_low_level ARM9/AC5 */ ;/* 6.0.1 */;/* AUTHOR */;/* */;/* William E. Lamie, Microsoft Corporation */;/* */;/* DESCRIPTION */;/* */ ;/* This function is responsible for any low-level processor */ ;/* initialization, including setting up interrupt vectors, setting */ ;/* up a periodic timer interrupt source, saving the system stack */ ;/* pointer for use in ISR processing later, and finding the first */ ;/* available RAM memory address for tx_application_define. */ ;/* */ ;/* INPUT */ ;/* */ ;/* None */ ;/* */ ;/* OUTPUT */ ;/* */ ;/* None */ ;/* */ ;/* CALLS */ ;/* */ ;/* None */ ;/* */ ;/* CALLED BY */ ;/* */ ;/* _tx_initialize_kernel_enter ThreadX entry function */ ;/* */ ;/* RELEASE HISTORY */ ;/* */ ;/* DATE NAME DESCRIPTION */;/* */;/* 06-30-2020 William E. Lamie Initial Version 6.0.1 */;/* */;/**************************************************************************/;VOID _tx_initialize_low_level(VOID);{ EXPORT _tx_initialize_low_level_tx_initialize_low_level PRESERVE8;;; /****** NOTE ****** We must be in SVC MODE at this point. Some monitors; enter this routine in USER mode and require a software interrupt to; change into SVC mode. */; LDR r2, =SVC_STACK_SIZE ; Pickup SVC MOV r0, #SVC_MODE ; Build SVC mode CPSR MSR CPSR_c, r0 ; Enter SVC mode MOV r1, sp ADD r1, r1, r2 ; Calculate start of SVC stack LDR r3, =_tx_thread_system_stack_ptr ; Pickup stack pointer STR r1, [r3, #0] ; Save the system stack;; /* Save the system stack pointer. */; _tx_thread_system_stack_ptr = (VOID_PTR) (sp);; LDR r1, =_tx_thread_system_stack_ptr ; Pickup address of system stack ptr LDR r0, [r1, #0] ; Pickup system stack ADD r0, r0, #4 ; Increment to next free word;; /* Save the first available memory address. */; _tx_initialize_unused_memory = (VOID_PTR) |Image$$ZI$$Limit| + HEAP + [SYS_STACK] + FIQ_STACK + IRQ_STACK;; LDR r2, =_tx_initialize_unused_memory ; Pickup unused memory ptr address STR r0, [r2, #0] ; Save first free memory address;; /* Setup Timer for periodic interrupts. */;; /* Setup ARMulator Timer0 for periodic interrupts. */ PUSH {lr} ; Save ISR lr LDR r1,=TMR0_CLK MOV r0,#0 BL sysSetTimerReferenceClock MOV r2,#1 ; PERIODIC_MODE MOV r1,#0x64 ; TX_TIMER_TICKS_PER_SECOND MOV r0,#0 ; TIMER0 BL sysStartTimer POP {lr} ; Recover ISR lr; /* Done, return to caller. */; IF {INTER} = {TRUE} BX lr ; Return to caller ELSE MOV pc, lr ; Return to caller ENDIF;};;;/* Define initial heap/stack routine for the ARM RealView (and ADS) startup code. This; routine will set the initial stack to use the ThreadX IRQ & FIQ & ; (optionally SYS) stack areas. */;; EXPORT __user_initial_stackheap;__user_initial_stackheap; LDR r0, =|Image$$ZI$$Limit| ; Get end of non-initialized RAM area; LDR r2, =HEAP_SIZE ; Pickup the heap size; ADD r2, r2, r0 ; Setup heap limit; ADD r3, r2, #4 ; Setup stack limit; MOV r1, r3 ; Setup start of stack; IF :DEF:TX_ENABLE_IRQ_NESTING; LDR r12, =SYS_STACK_SIZE ; Pickup IRQ system stack; ADD r1, r1, r12 ; Setup the return system stack; BIC r1, r1, #7 ; Ensure 8-byte alignment; ENDIF; LDR r12, =FIQ_STACK_SIZE ; Pickup FIQ stack size; ADD r1, r1, r12 ; Setup the return system stack; BIC r1, r1, #7 ; Ensure 8-byte alignment; LDR r12, =IRQ_STACK_SIZE ; Pickup IRQ system stack; ADD r1, r1, r12 ; Setup the return system stack; BIC r1, r1, #7 ; Ensure 8-byte alignment; IF {INTER} = {TRUE}; BX lr ; Return to caller; ELSE; MOV pc, lr ; Return to caller; ENDIF;;;/* Define shells for each of the interrupt vectors. */; EXPORT __tx_undefined__tx_undefined B __tx_undefined ; Undefined handler; EXPORT __tx_swi_interrupt__tx_swi_interrupt B __tx_swi_interrupt ; Software interrupt handler; EXPORT __tx_prefetch_handler__tx_prefetch_handler B __tx_prefetch_handler ; Prefetch exception handler; EXPORT __tx_abort_handler__tx_abort_handler B __tx_abort_handler ; Abort exception handler; EXPORT __tx_reserved_handler__tx_reserved_handler B __tx_reserved_handler ; Reserved exception handler;; EXPORT __tx_irq_handler EXPORT __tx_irq_processing_return __tx_irq_handler;; /* Jump to context save to save system context. */ B _tx_thread_context_save__tx_irq_processing_return;; /* At this point execution is still in the IRQ mode. The CPSR, point of; interrupt, and all C scratch registers are available for use. In ; addition, IRQ interrupts may be re-enabled - with certain restrictions -; if nested IRQ interrupts are desired. Interrupts may be re-enabled over; small code sequences where lr is saved before enabling interrupts and ; restored after interrupts are again disabled. */;;; /* Check for Timer0 interrupts on the ARMulator. */ LDR r0,=REG_AIC_IPER LDR r0,[r0] MOV r1,#0x3f AND r0,r1,r0,LSR #2 PUSH {r0} LDR r2,=TMR0_IRQn ; Pickup Timer0 interrupt present bit CMP r2, r0 ; BNE _tx_not_timer_interrupt ; If 0, not a timer interrupt LDR r0,=REG_TMR_TISR LDR r0,[r0] AND r0,r0,#1 CMP r0,#0 BEQ _tx_not_timer_interrupt LDR r1,=REG_TMR_TISR ; Build address of Timer0 clear register MOV r0,#1 ; STR r0, [r1] ; Clear timer 0 interrupt BL _tx_timer_interrupt ; Timer interrupt handler_tx_not_timer_interrupt;; /* Interrupt nesting is allowed after calling _tx_thread_irq_nesting_start ; from IRQ mode with interrupts disabled. This routine switches to the; system mode and returns with IRQ interrupts enabled. ; ; NOTE: It is very important to ensure all IRQ interrupts are cleared ; prior to enabling nested IRQ interrupts. */ IF :DEF:TX_ENABLE_IRQ_NESTING BL _tx_thread_irq_nesting_start ENDIF;;; /* Application IRQ handlers can be called here! */;; LDR r0,=REG_AIC_IPER; LDR r0,[r0]; MOV r1,#0x3f; AND r0,r1,r0,LSR #2 POP {r0} SUB sp,sp,#8 STR r0,[sp,#4] LDR r0,=REG_AIC_ISNR LDR r0,[r0] STR r0,[sp,#0] LDR r0,[sp,#4] CMP r0,#0 BEQ _irq_exit LDR r0,[sp,#0] CMP r0,#0 BEQ _irq_clear LDR r1,=sysIrqHandlerTable LDR r2,[sp,#4] LDR r0,[r1,r2,LSL #2] BLX r0_irq_clear MOV r0,#1 LDR r1,=REG_AIC_EOSCR STR r0,[r1]_irq_exit ADD sp,sp,#8; /* If interrupt nesting was started earlier, the end of interrupt nesting; service must be called before returning to _tx_thread_context_restore. ; This routine returns in processing in IRQ mode with interrupts disabled. */ IF :DEF:TX_ENABLE_IRQ_NESTING BL _tx_thread_irq_nesting_end ENDIF;; /* Jump to context restore to restore system context. */ B _tx_thread_context_restore;;; /* This is an example of a vectored IRQ handler. */; EXPORT __tx_example_vectored_irq_handler__tx_example_vectored_irq_handler;;; /* Save initial context and call context save to prepare for ; vectored ISR execution. */;; STMDB sp!, {r0-r3} ; Save some scratch registers; MRS r0, SPSR ; Pickup saved SPSR; SUB lr, lr, #4 ; Adjust point of interrupt ; STMDB sp!, {r0, r10, r12, lr} ; Store other scratch registers; BL _tx_thread_vectored_context_save ; Vectored context save;; /* At this point execution is still in the IRQ mode. The CPSR, point of; interrupt, and all C scratch registers are available for use. In ; addition, IRQ interrupts may be re-enabled - with certain restrictions -; if nested IRQ interrupts are desired. Interrupts may be re-enabled over; small code sequences where lr is saved before enabling interrupts and ; restored after interrupts are again disabled. */;;; /* Interrupt nesting is allowed after calling _tx_thread_irq_nesting_start ; from IRQ mode with interrupts disabled. This routine switches to the; system mode and returns with IRQ interrupts enabled. ; ; NOTE: It is very important to ensure all IRQ interrupts are cleared ; prior to enabling nested IRQ interrupts. */; IF :DEF:TX_ENABLE_IRQ_NESTING; BL _tx_thread_irq_nesting_start; ENDIF;; /* Application IRQ handlers can be called here! */;; /* If interrupt nesting was started earlier, the end of interrupt nesting; service must be called before returning to _tx_thread_context_restore. ; This routine returns in processing in IRQ mode with interrupts disabled. */; IF :DEF:TX_ENABLE_IRQ_NESTING; BL _tx_thread_irq_nesting_end; ENDIF;; /* Jump to context restore to restore system context. */; B _tx_thread_context_restore;; IF :DEF:TX_ENABLE_FIQ_SUPPORT EXPORT __tx_fiq_handler EXPORT __tx_fiq_processing_return__tx_fiq_handler;; /* Jump to fiq context save to save system context. */ B _tx_thread_fiq_context_save__tx_fiq_processing_return;; /* At this point execution is still in the FIQ mode. The CPSR, point of; interrupt, and all C scratch registers are available for use. */;; /* Interrupt nesting is allowed after calling _tx_thread_fiq_nesting_start ; from FIQ mode with interrupts disabled. This routine switches to the; system mode and returns with FIQ interrupts enabled. ;; NOTE: It is very important to ensure all FIQ interrupts are cleared ; prior to enabling nested FIQ interrupts. */ IF :DEF:TX_ENABLE_FIQ_NESTING BL _tx_thread_fiq_nesting_start ENDIF;; /* Application FIQ handlers can be called here! */;; /* If interrupt nesting was started earlier, the end of interrupt nesting; service must be called before returning to _tx_thread_fiq_context_restore. */ IF :DEF:TX_ENABLE_FIQ_NESTING BL _tx_thread_fiq_nesting_end ENDIF;; /* Jump to fiq context restore to restore system context. */ B _tx_thread_fiq_context_restore;; ELSE EXPORT __tx_fiq_handler__tx_fiq_handler B __tx_fiq_handler ; FIQ interrupt handler ENDIF;; /* Reference build options and version ID to ensure they come in. */; LDR r2, =_tx_build_options ; Pickup build options variable address LDR r0, [r2, #0] ; Pickup build options content LDR r2, =_tx_version_id ; Pickup version ID variable address LDR r0, [r2, #0] ; Pickup version ID content;; END
这个代码主要干以下任务:
__vectors初始化中断向量表
Reset_Go程序入口,初始化AIC和堆栈,并跳转main函数
_tx_initialize_low_level是tx_kernel_enter调用,用来初始化timer0做为OS的tick定时器,并初始化_tx_thread_system_stack_ptr和_tx_initialize_unused_memory
后的就是中断处理函数,主要是__tx_irq_handler LDR r0,=REG_AIC_IPER LDR r0,[r0] MOV r1,#0x3f AND r0,r1,r0,LSR #2 PUSH {r0} LDR r2,=TMR0_IRQn ; Pickup Timer0 interrupt present bit CMP r2, r0 ; BNE _tx_not_timer_interrupt ; If 0, not a timer interrupt LDR r0,=REG_TMR_TISR LDR r0,[r0] AND r0,r0,#1 CMP r0,#0 BEQ _tx_not_timer_interrupt LDR r1,=REG_TMR_TISR ; Build address of Timer0 clear register MOV r0,#1 ; STR r0, [r1] ; Clear timer 0 interrupt BL _tx_timer_interrupt ; Timer interrupt handler
这段代码检查是不是Timer0定时器中断,如果是则调用_tx_timer_interrupt,否则跳转到_tx_not_timer_interrupt执行正常中断处理
这里的PUSH {r0}注意,由于REG_AIC_IPER只能读取一次,这里压栈保存,方便后面正常中断处理使用 POP {r0} ; 弹出前面压入的中断号 SUB sp,sp,#8 ; 在栈中为临时变量留出空间 STR r0,[sp,#4] LDR r0,=REG_AIC_ISNR LDR r0,[r0] STR r0,[sp,#0] LDR r0,[sp,#4] CMP r0,#0 BEQ _irq_exit LDR r0,[sp,#0] CMP r0,#0 BEQ _irq_clear LDR r1,=sysIrqHandlerTable LDR r2,[sp,#4] LDR r0,[r1,r2,LSL #2] BLX r0_irq_clear MOV r0,#1 LDR r1,=REG_AIC_EOSCR STR r0,[r1]_irq_exit ADD sp,sp,#8 ; 返还临时变量占用的空间
这就是正常中断处理了,作用等同于sys.c中的sysIrqHandler函数
移植到此就完成了
4.验证
修改main.c文件 /**************************************************************************//** * @file main.c * @version V1.00 * $Date: 15/05/07 5:38p $ * @brief NUC970 Driver Sample Code * * @note * Copyright (C) 2015 Nuvoton Technology Corp. All rights reserved. ******************************************************************************/#include "nuc970.h"#include "sys.h"#include "tx_api.h"#define DEMO_STACK_SIZE (1024 * 32)#define DEMO_BYTE_POOL_SIZE (1024 * 1024)TX_THREAD thread_0;TX_THREAD thread_1;TX_THREAD thread_2;TX_BYTE_POOL byte_pool_0;TX_EVENT_FLAGS_GROUP event_flags_0;UINT thread_0_counter = 0;/* Define what the initial system looks like. */void thread_0_entry(ULONG thread_input){ UINT status; /* This thread simply sits in while-forever-sleep loop. */ while (1) { /* Increment the thread counter. */ thread_0_counter++; /* Sleep for 10 ticks. */ if (thread_0_counter & 1) tx_thread_sleep(TX_TIMER_TICKS_PER_SECOND / 10); else tx_thread_sleep(TX_TIMER_TICKS_PER_SECOND); /* Set event flag 0 to wakeup thread 5. */ status = tx_event_flags_set(&event_flags_0, 0x1, TX_OR); /* Check status. */ if (status != TX_SUCCESS) break; }}void thread_1_entry(ULONG thread_input){ UINT status; ULONG actual_flags; /* This thread simply waits for an event in a forever loop. */ while (1) { /* Wait for event flag 0. */ status = tx_event_flags_get(&event_flags_0, 0x1, TX_OR_CLEAR, &actual_flags, TX_WAIT_FOREVER); /* Check status. */ if ((status != TX_SUCCESS) || (actual_flags != 0x1)) break; sysprintf("%s\r\n", __func__); }}void thread_2_entry(ULONG thread_input){ /* This thread simply sits in while-forever-sleep loop. */ while (1) { tx_thread_sleep(TX_TIMER_TICKS_PER_SECOND); sysprintf("%d\r\n", thread_0_counter); }}/*-----------------------------------------------------------------------------*/int main(void){ sysDisableCache(); sysFlushCache(I_D_CACHE); sysEnableCache(CACHE_WRITE_BACK); sysInitializeUART(); sysprintf("\n\n Hello NUC970 !!!\n"); sysprintf("APLL clock %d MHz\n", sysGetClock(SYS_APLL)); sysprintf("UPLL clock %d MHz\n", sysGetClock(SYS_UPLL)); sysprintf("CPU clock %d MHz\n", sysGetClock(SYS_CPU)); sysprintf("System clock %d MHz\n", sysGetClock(SYS_SYSTEM)); sysprintf("HCLK1 clock %d MHz\n", sysGetClock(SYS_HCLK1)); sysprintf("HCLK234 clock %d MHz\n", sysGetClock(SYS_HCLK234)); sysprintf("PCLK clock %d MHz\n", sysGetClock(SYS_PCLK)); tx_kernel_enter(); return 0;}void tx_application_define(void *first_unused_memory){ CHAR *pointer = TX_NULL; /* Create a byte memory pool from which to allocate the thread stacks. */ tx_byte_pool_create(&byte_pool_0, "byte pool 0", first_unused_memory, DEMO_BYTE_POOL_SIZE); /* Put system definition stuff in here, e.g. thread creates and other assorted create information. */ /* Allocate the stack for thread 0. */ tx_byte_allocate(&byte_pool_0, (VOID **) &pointer, DEMO_STACK_SIZE, TX_NO_WAIT); /* Create the main thread. */ tx_thread_create(&thread_0, "thread 0", thread_0_entry, 0, pointer, DEMO_STACK_SIZE, 1, 1, TX_NO_TIME_SLICE, TX_AUTO_START); /* Allocate the stack for thread 1. */ tx_byte_allocate(&byte_pool_0, (VOID **) &pointer, DEMO_STACK_SIZE, TX_NO_WAIT); /* Create thread 1. This thread simply pends on an event flag which will be set by thread_0. */ tx_thread_create(&thread_1, "thread 1", thread_1_entry, 0, pointer, DEMO_STACK_SIZE, 4, 4, TX_NO_TIME_SLICE, TX_AUTO_START); /* Allocate the stack for thread 2. */ tx_byte_allocate(&byte_pool_0, (VOID **) &pointer, DEMO_STACK_SIZE, TX_NO_WAIT); tx_thread_create(&thread_2, "thread 2", thread_2_entry, 0, pointer, DEMO_STACK_SIZE, 5, 5, TX_NO_TIME_SLICE, TX_AUTO_START); tx_event_flags_create(&event_flags_0, "event flags 0");}
创建三个任务,和一个事件任务0和任务2通过事件通知,任务1打印任务0中的记数
设置项目引用,包含tx的common/inc和port/arm9/ac5/inc

编译项目,下载测试
这里注意sysprintf并没有做可重入处理,项目中建议需要处理一下
此项目只做移植说明,并没有在目标板实测运行,另外实测的项目相对复杂,不便于讲解. 后记:
filex基于sdnand早前移植过,前后台模式下使用,没有支持os的,后面需要打开一下os再测试一下,下一步需要移植netxduo了,这个还是第一次用.
不足之处还请多多指教
|